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Abstract-Existing constraints on time, computational, and 
communication resources associated with Mars rover 
missions suggest on-board science evaluation of sensor data 
can contribute to decreasing human-directed operational 
planning, optimizing returned science data volumes, and 
recognition of unique or novel data. All of which act to 
increase the scientific return from a mission. Many 
different levels of science autonomy exist and each impacts 
the data collected and returned by, and activities of, rovers. 
Several computational algorithms, designed to recognize 

objects of interest to geologists and biologists, are 
discussed. Theralgorithms represent various functions that 
producing scientific opinions and several scenarios 
illustrate how the opinions can be used. 
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1. INTRODUCTION 
NASA's Office of Space Science is addressing several 
fundamental questions about our solar system and life. 
How did the universe begin and evolve? How did we get 
here? Where are we going? Are we alone? 
One significant discovery about Mars stands out above all 
others: the possible presence of liquid water on Mars, 
either in its ancient past or preserved in the subsurface 
today. Water is key to supporting life, because almost 

everywhere we find water on Earth, we find life. If Mars 
once had liquid water, or still does today, it's compelling to 
ask whether life forms could have developed on its surface 
and if so, then does any evidence of it's presence remain? 
More provocative, if so, could any of these tiny living 
creatures still exist today? 
To discover the possibilities for life on Mars--past, present 
or our own in the future- NASA's Mars Program has 
developed an exploration strategy entitled Follow the 
Wafer. This effort begins with understanding the current 
environment on Mars. Observed features like dry 
riverbeds, ice in the polar caps, and rock types that only 
form when water is present must be explored: If ancient 
Mars once held a vast ocean in the northern hemisphere, as 
some scientists believe, then how did Mars transition from 
a more watery environment to the dry and dusty climate it 
has today? 
To pursue these goals, all of NASA's future missions to 
Mars will be driven by rigorous scientific questions that 
will continuously evolve as new discoveries are made. On- 
going and future missions will continue to provide 
abundant morphological imaging, global compositional, 
and global topographic information. All these data allow 
scientists to develop hypotheses regarding the presence of 
certain materials and address mechanisms associated with 
their genetic and evolutionary history. 
As illustrated on the left side of Figure 1. Historical mission 
operations have involved returned scientific data, their 
scientific evaluation, scientific recommendations for hture 
mission activity, and development and relaying of 
commands to the vehicle. This traditional cycle of data 
evaluation and commands is not amenable to rapid long- 
range traverses, discovery of novelty, or rapid response to 
any unanticipated situations. Future Mars missions are 
envisioned to include rovers that carry imaging devices to 
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characterize the surface morphology, and a variety of 
analytical instruments intended to evaluate the chemical 
and mineralogical nature of the environment(s) that they 
encounter. In addition to issues of response time, the 
nature of imaging andor spectroscopic devices is such that 
tremendous data volumes can be acquired that simply can 
not be relayed to Earth within the time constraints imposed 
by communication opportunities. 
The computational resources available on board current and 
planned rovers are quite limited. For example, the 2003 
klars Exploration Rover (MER) missions currently rely 
upon CPU's operating at S20blI-Iz and have memory 
storage capabilities of approximately one hundred 
megabytes [ 1,2]. If these resource restrictions remain 
unchanged, then any effort to enable scientific evaluation of 
data acquired on-board these platforms must address these 
severe computational and memory limitations. 
A large obstacle to achieving the scientific goals on Mars is 
the enormous distance that separates it from our own 
planet, The effectiveness of rovers is limited by the fact that 
communications are problematic over such large distances. 
Transmissions occur at extremely low data rates and may 
take over 20 minutes to travel one way. Another challenge , 
is the harsh Martian environment quickly degrades rover 
hardware (the Sojourner rover lasted roughly three 
months), so time is essential once the rover is deployed. 
The combination of limited hardware resources, 
communication time delays, and data transmission 
capabilities suggest crucial decisions regarding data 
analysis be made on-board these robotic explorers that 
require automating scientific analysis and discovery based 
upon data gathered by sensors. In order to address 
communication bottlenecks and reduce the dependence on 
ground based control there have been efforts in recent years 
to develop technologies that will enable rovers to act more 
autonomously. A rover employing autonomy technologies 
would be able to respond to high-level commands 
representing complex sequences of actions that may involve 
sensory feedback from the environment (e.g., test the 
hypothesis that this wadis an aqueous environment, or 
obtain spectra of the five largest rocks in the vicinity). This 
translates into fewer transmissions required to' perform a 
given task and, ultimately, more mission time devoted to 
science and less to rover operation. 
Specifics of the Mars 2009 mission remain to be more 
completely defined [3]. However, the mission scenario still 
includes a long-range, long-duration rover implying a 
dynamic situation with limited communication abilities 
during traverses. The fundamental philosophical change 
needing to occur is illustrated in Figure 1 where, on the 
right, a science-enabled mission is shown. As indicated in 
Figure 1, a science-enabled rover does not eliminate input 
from the scientists; as new hypotheses or high-level 
directions are required. 
It is not surprising that the planetary science community 
has been slow to embrace autonomy as a necessary 

component of rover missions. There are significant risks in 
trusting mission-critical decisions to a machine. Applying 
autonomy technologies indiscriminately is likely not 
realistic as some tasks are good candidates for automation, 
while others are better left to the judgement of human 
experts. Successhl application of autonomy technologies 
will depend upon striking the proper balance between risks 
introduced by such technologies and the likely benefits of 
using them. 
So far, most automation efforts have included tasks leading 
up to data acquisition such as navigation, health and safety 
monitoring, and autonomous sensor placement. There has 
been only modest research into the potential for 
autonomous interpretation of sensor data to enhance the 
scientific value of a mission [e.g. 4,5,6,7]. The on-going 
projects at NASA's Ames Research Center were initiated to 
address this gap in autonomy technology research. 
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Figire I .  Philosophical and practical differences between 
historical (left) and Science-enabled (right) rover mission 
scenarios. 

There are many levels of science autonomy spanning the 
range from assuring quality science data is ,collected to 
summarizing scientific content of sensor data [7]. Below 
we describe these various levels and illustrate their impact 
on future rover activities and data returned to scientists on 
Earth. 
A basic level of autonomy, not described by [7], mimics the 
same questions addressed in well-controlled laboratory 
studies. Is the instrument working properly? Is the 
appropriate sample being measured? What actions can 
improve the accuracy of the measurement? All of these are 
intended to assure good quality science data is obtained and 
can impact the data collection strategy and hence, 
operational sequence planning and execution. Such 
considerations may also drive instrumental design to 
provide the rover with the ability to monitor actual voltages 
or resistances within an instrument. However, once the 
data is obtained, no further action is taken to change the 
data volume or priority for return to Earth. 
The inteimediate level of autonomy involves evaluating the 
science content of the sensor data; perhaps correlating or 
combining data from two, or more, different sensors. 
Based upon this evaluation, data might be reprioritized 
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(data providing evidence for aqueous activity has highest 
priority), or selectively compressed by differing amounts for 
transmission to Earth (return only average spectra of broad 
regions encountered). Regardless of these evaluations, the 
rover does not alter its planned activities, but the data 
returned may be different than originally intended, or in the 
extreme, never returned at all. 
This intermediate level of autonomy illustrates how the 
issue of science autonomy can be viewed as a compression 
problem. The relative benefits and risks of techniques in 
science autonomy can be compared with those in the larger 
field of compression. For example, maximize the amount of 
information returned from a rover at a site, having a finite 
data collection time, during which it receives no guidance. 
The scientific yield of information is considered a 
constraint in addition to the typical resource constraints of 
command cycle frequency, data volume, and total mission 
life [SI. 
At higher levels of autonomy, evaluation of sensor data 
yields results that directly inff uence planned rover activities 
or provide terse summaries of sensor data. For example, if 
sensor data indicate the presence of a predefined important 
object (e.g. layers, water, or a fossil), then the rover may 
halt planned activities and await directions from Earth or ' 
alternatively, halt and obtain other sensor data for that 
object. If the rover continues to encounter the same 
materials during its traverse from point A to point B, then 
it may provide a very terse summary containing a few 
representative data rather than return the full complement 
of data collected; saving valuable data volume. In this 
scenario all rover activities can be affected. The rover may 
alter its planned activity, selectively eliminate data for 
return, andor  significantly compress data. 
In general, the goal in the development of autonomous 
science data interpretation is to enhance the scientific 
return of Mars rover missions. Expanding on the analogy 
above, it should be possible to autonomously monitor 
navigation imagery as a rover traverses from point to point, 
and to recognize certain signature features that may be 
related to water or life (e.g., sedimentary layering). If any 
are encountered during a traverse, the rover may decide to 
stop and alert the ground control team, This is merely one 
of many possible situations in which so-called "science 
autonomy" may prove invaluable. 
Current directions of our research include identification of 
generic contour patterns in images that are likely to 
indicate scientifically interesting geologic features. For 
example, parallel contours in an image may be indicative of 
layering. Many geologic features of interest can be fairly 
well represented by line drawings as illustrated in section 2. 

2. IMAGE ANALYSIS 

Images can provide tremendous amount of information 
regarding morphological shapes of interest to both 
geologists and biologists. In 2D, gray-scale images of 

natural landscapes, there are a number of important 
geological features that have similar general characteristics. 
Subsequently, some important geologic features can be 
grouped into basic classes having an associated semantic 
label. Dendritic structures (constructive and erosional 
fluvial activity, biologic activity, mineral morphology, Fig. 
2A); parallelograms (mineral morphology, structural 
patterns, Fig. 2B); elongated shapes (mineral and fossil 
morphology, fig. 2C); circular or elliptical patterns 
(impacts, volcanoes, biologic organisms, mineral 
morphology, Fig 2D); stellar patterns (constructive fluvial 
activity, mineral and fossil morphology, Fig. 2E); and 
concentric radial patterns (evaporite deposits, lava flows, 
Fig. 2F). Knowing the context in which the image was 
acquired, e.g. orbital versus microscopic, allows the best 
selection from among the various alternatives. To  this end 
we have been implementing various automated image 
analysis algorithms to recognize a few key morphologies. 

D 

Figure 2. Various morphologic shapes of interest to 
geology and biology. (A) dendritic patterns; (B) 
parallograms; (C) elongated shapes; (D) circles and 
ellipses; (E) stellar patterns; and F) concentric radial 
patterns. 

2. I Edge Detector 

Many of our image algorithms rely upon recognizing 
boundaries, and hence edges. We evaluated Sobel [9] and 
Canny [IO] edge detectors. The following methods require 
the edge response at each pixel and the slope (orientation) 
of the edge. Because of its ability to localize edges with sub- 
pixel accuracy, and the additional capability of readily 
linking edges, the Canny edge detector was preferred over 
the Sobel method. 

2.2 Layer Detection 

The objective of the layer detection algorithm is to partition 
the rectangular image lattice (row, column) into "layered" 
and "non-layered" regions, producing a binary image 
representing these two regions. This is accomplished by 
searching a set of connected edges produced by the Canny 
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algorithm [ I O ]  for spatial groupings of  approximately 
parallel and approximately straight edge segments [ 1 11. For 
each point on the lattice, the first step is to examine all L- 
length edge segments in the surrounding NxN window, 
where L and N are user-defined parameters. If an edge 
segment is straight enough, its orientation is estimated 
from its endpoints. A histogram of segment orientations is 
maintained for each window along with a tally on the total 
number of approximately straight segments in the window. 
Next, a dominant orientation is computed for each window 
from its histogram along with a measure of dominance. 
Finally, a decision rule, based on the orientation dominance 
and density of edge segments in the surrounding window, is 
applied to each pixel. 
To summarize, the three main steps leading to the final 
partition are: 1) generate statistics including the number of 
edge segments in each window and the distribution of their 
orientations; 2) determine the dominant orientation in each 
window and the iissociated degree of dominance; and 3) for 
each pixel, apply a decision rule to obtain the final labeling. 
Figure 3 illustrates the application of this algorithm to 
images containing and not containing layers. 

Figure 3. Rtsults of layer detection algorithm. a) An image 
exhibiting obvious parallel structures b) An image lacking 
any such structures (b). 

Good correspondence between layered regions identified by 
this algorithm and layered regions identified by a geologist 

depends upon the validity of the following assumptions: I )  
If the edge set was derived from an image, then the layers 
must be resolved in the image and must be of sufficiently 
high contrast that an edge or line detection procedure can 
extract them; 2 )  edges representing layer boundaries are 
approximately parallel (i.e. perspective doesn't make them 
appear to diverge significantly); and 3) there are no parallel 
and linear structures in the scene caused by objects or 
phenomena other than geological layers. 

2.3 Horizon Detection 

The algorithm implemented to locate the apparent horizon 
in a grayscale image consists of the followipg: 1) 
determining a feasible region in an image to perform a 
search for the apparent horizon 2) a heuristic search 
method; and 3) evaluating candidate solutions reached by 
the search. The methods used were devised in an effort to 
minimize computational complexity while ensuring 
robustness. 
If information describing the camera's orientation and field 
of view is available, then it is used to determine the feasible 
.region where the apparent horizon is expected. All image 
points above the geometric horizon (i.e. the plane tangent 
to the planet's surface at the point of observation) define the 
feasible region. If only points below the geometric horizon 
have been imaged, then the assumption is that the apparent 
horizon has not been imaged. Otherwise, the feasible region 
is searched for. 
The search method used for the apparent horizon belongs to 
a class of image analysis algorithms &own as Active 
Contours. An initial estimate of the horizon's location in 
the image is made (usually the uppermost row) and then 
deformed over time. A physical analogy is used here to 
describe the deformation algorithm. Points (pixels) along 
the active contour are treated as a sequence of particles 
connected by inelastic strings that move in response to a 
force field. The motion of each particle is restricted to 
discrete downward steps in the vertical direction &e. along 
a column). The force field comprises two components: a 
uniform downward force analogous to gravity, and an 
upward buoyant force that is a function of local image edge 
intensity and direction. In addition, a particle's neighbors 
may exert forces on i t  if it moves to the end of either the left 
or right connecting string. 
Initially the downward force is set to zero. Then it is 
gradually increased until the contour begins to move. The 
contour is allowed to propagate until it reaches an 
equilibrium, at which point it is considered as a potential 
candidate and a confidence value is computed and the 
potential candidate is either approved or rejected. Currently 
confidence is defined as a heuristic function of contour 
intensity and smoothness. The algorithm terminates when 
the active contour reaches the lower boundary of the 
feasible image region. Approved candidate solutions are 
stored in a list for retrieval. 
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So-called Snakes [12,13] are another type of active contour. 2.4 Terminator Detection 

'pmj . - - _.-. /- ~ 2.. - - - -  

To evaluate how well our algorithm performed relative to 
this alternative, we implemented a version of our algorithm 
that uses the efficient snakes of Williams and Shah [12] in 
place of our active contour. The snake-based version was 
less accurate and took minutes to complete the search as 
opposed to a few seconds using our method. Figure 4 
illustrates the application of our algorithm to images where 
a horizon is present and absent. 
Strong assumptions are: 1) if the horizon is visible in the 
image, then each image column contains a single horizon 
pixel; 2 )  camera roll is small (<ZOO). If camera roll is large, 
then the image should be rotated before processing so that 
the effective roll is small; 3) the horizon's slope predefined 
upper limit (currently 45') for significant portions of its 
length. Weak assumptions are: 1 )  there are no salient 
horizontal contours above the horizon in the image; and 2) 
the horizon is the most salient contour connecting the left 
and right image boundaries, where contour salience is 
approximately a function of edge strength and smoothness. 
If occasional errors are acceptable, then the weak 

assumptions may be violated. If strong assumptions are 
violated, poor performance should be expected. 

, 
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A n  object's orientation will, in general, affect the 
orientation of its terminator in the image. A spherical 
object model is used because all orientations are equivalent. 
Once the expected terminator orientation has been 
calculated, Canny's edge operator [lo] is used to find 
candidate edge points in the image. The strength of each 
candidate is then attenuated according to the deviation of 
its orientation from the expected terminator orientation. 
The hysteresis step of the Canny algorithm [lo] is 
performed to extract connected edges from the set of edge 
point candidates. Edge segments which are at least some 
user defined threshold length and which have roughly the 
expected orientation are considered valid terminator 
candidates. 

Figure 4. Results of horizon detection algorithm. The Finally, a confidence measure is assigned to each 
apparent horizon has been delineated in image (a), while candidate, A heuristic fitnction of intensity means and 
use Of camera pointing information enabled the algorithm variances of image regions on either side of the candidate 
to determine that the horizon was not visible in image (b). boundary is used to calculate a confidence measlire and 

candidates whose associated confidences are below a 
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predefined threshold are eliminated. Although this method 
of assigning confidence is naive, results from field test 
images indicate good detection. 
For a particular application, such as finding rocks, results 
can be improved by using prior knowledge about the image 
in order to limit the search to a feasible region. Edge points 
outside the feasible region are eliminated from 
consideration. For example, the horizon detector results 
discussed above have been used to limit the search space in 
past efforts to detect rocks [ 111. 

Figure 6. Autonomous selection of spectrometer targets 
based on terminator detection in images from the Sojourner 
(a) and Marsokhod (b) rovers. Objects having terminators 
with length greater than the diameter of the spectrometer's 
field of view were considered good targets. 

Strong assumptions are: 1) illumination can be 
approximated by a point source at infinity. If not, then the 
terminators we are searching for may not exist. Some 
degree of mutual illumination between objects in the scene 
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is acceptable as long as it is negligible compared to the 
direct illumination from the light source; 2) the terminator 
on each object in the scene is visible and coincides with a 
detectable edge in the image: and 3) the field of view of the 
camera is narrow enough that weak perspective projection 
is an adequate model for image formation. Weak 
assumptions are: 1) surfaces in the scene are approximately 
Lambertian; 2 )  dramatic changes in image brightness along 
the expected terminator orientation are caused by shadows; 
and 3) objects in the scene are approximately spherical. 
Figure 6 illustrates the application of  our algorithm to 
selection of potential spectrometer targets from 
extraterrestrial and terrestrial rover image. 
If reliable performance is required, images should 'satisfy 
all of the assumptions. If occasional errors are acceptable, 
then the weak assumptions may be violated. Two major 
failings of this approach have been observed: 1) the 
inability to reliably distinguish dark objects from shadows 
due to the diffculry in detecting the edge between a dark 
rock and its shadow; and 2) the tendency to reject heavily 
textured objects due to the assumption that variance on 
either side of an object's terminator is small. 

2.5 Line 

The stellar pattern detector and the parallelogram detector 
described below employ the results of line detection. The 
Hough Transform for line detection [I41 was used. 
Representing the lines in polar coordinates, they are ranked 
according to total response; allowing partially occluded 
structures to be accounted for. A predefined number of lines 
having the highest total response are selected for fbrther 
analysis in the various detectors described below. In some 
cases, the total response of a line is normalized by the line 
length. In order to allow nearly straight lines to be 
included, the edge map is blurred or the parameter space 
can be decimated. 

2.6 Parallelogram (see Figure 2B) 

Every pair o f  parallel lines P is compared with every other 
distinct pair of parallel lines R that are not parallel to P. 
Using these four lines, four intersections are computed. 
Then a box is traced from one intersection to the next and 
compared with the edge map. If enough of this box has an 
edge response that is above some predefined threshold, then 
the tracing is labeled as a parallelogram. In order to deal 
with affine transformed parallelograms, the image must 
either be rectified [ 151 or a slack term is used to allow the 
parallel criteria to be approximate. 

2.7 Stellar and Radial Pcittern 

We define a stellar pattern as a shape having appendages 
that can be decomposed into a set of elongated patterns, or 
appendages, that converge in a center. The polar lines 
from the Hough transform [ 141 are faintly "drawn" across a 
blank imaze. Intersections are pixels upon M. hich niiiltiple 
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distinct lines have been drawn. The intersections that result 
from the most lines will have the highest intensity. 
In cases of objects with wide arms, the intersections created 
through the edge map will not correspond to the 
intersections created by the arms of the stellar pattern. 
Performance, in this case, is improved by decimating the 
(Hough) parameter space. A decimated parameter space 
will map neighboring intersections to the same parameter 
vector. Decimating the parameter space combines 
neighboring intersections. The thicker the appendages, the 
greater the decimation needed. Performance, can be 
enhanced by preprocessing the image, for example ~. 

segment 

Figure 7. An image of a stellar pattern with the detected 
center (left), and the 40 strongest lines detected drawn 
across the edge map (right). The lines are drawn across the 
entire image to account for occlusion. 

commonly use a two-tiered model. The NBN in particular 
uses one response variable with independent variables as 
child nodes [16]; an approach that reduces the number of 
samples needed to train the network. Even so, the NBN 
requires a training set that represents the minerals in the 
proportions in which they occur in the evaluation 
environment. 
In a mineral identification problem, even this restraint still 
requires an inordinate amount of data because of the large 
number of minerals. By using a hidden (dummy) variable of 
mineral class (see Fig. S), with a probability distribution 
defined by a scientist, only the conditional probabilities for 
each mineral given its class need to be computed. 
A mineral class, e.g. carbonate, is simply a group of 
minerals, e.g. calcite, dolomite, et cetra. The likelihood of 
a mineral, given its class, is either assumed to be the same 
for all minerals in that class or defined explicitly. The 
mineral class need not correspond to groupings of geologic 
significance. it is only important that it be a partition of ail 
minerals defined by the mineral node. However, classes 
that do correspond to groupings of geologic significance 
facilitate the assigning of prior probabilities of each class 
and the collection of the necessary spectra to create the 
training data set. 
As illustrated in Figure 8, The network used has a three- 

2.8 Ellipse (Figure 2 0 )  

The Hough transform is also used. The parameter space is 
defined using minor axis, major axis, center x, center y, 
and rotation of the ellipse in radians. Shapes that are nearly 
ellipses also return high responses if we collapse the 
rotation of the ellipse and scan for a small range of 
rotations. 
Since an ellipse with major axis j and minor axis n, rotated 
by pi/2 is equivalent to zn ellipse with a major axis of n and 
a minor axis of j, the search space is truncated to include 
only ellipses with minor axis greater than or equal to its 
major axis. 

3. SPECTR4L &%4LYSIS 

In geology, mineral identification is key to classification of 
rock types and hence, in addressing what geological 
processes have been active within a given locale. Distinct 
mineral identification typically requires analytical 
laboratory techniques. Here we rely upon remote spectral 
observations as a proxy for the types of triage analyses that 
might be used in rover missions to help select what targets 

- 
tiered topology. The response node is defined over the 
space of chosen mineral classes and has the mineral 
variable as a child node. There is an other value for the 
mineral class variable to try to account for- unexpected 
minerals. In practice however, trying to account for the 
unexpected is fiitile. 
The mineral variable is defined over the space of selected 
minerals. This mineral variable has firztures as child 
variables, the set of which is called a feature vector. Each 
feature. is a summary statistic derived from the spectrum. 

-, 
Feature I; ,-j -J . (FeatureN) I. to further investigate using more resource intensive tools. 

mineral presence or absence. In our case, given a spectrum, 
the result is classified as a carbonate or not. 

3. I Bayesian Method 

Simple implementations of Bayes Belief Networks [16, 
hereafter BBNs], such as the Nai' ve Bayes Net (NBN), 

We require a label for a spectrum that indicates a specific ~ v .* ,-* w' ..d* 

Figure 8. Illustration of the three-tiered approach where 
features are allowed to be dependent upon adjacent features. 

For carbonate detection, carbonate is simply one of the 
mineral classes and if it is the most likely class for a given 
spectrum, that spectrum is labeled carbonate. 
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A scientist must choose the refevant mineral types, partition 
them into mineral classes and set the prior probability that 
an arbitary mineral belongs to each of these classes. 
Mixtures of minerals giving rise to spectral features not 
exhibited by their component minerals should be separated 
into unique types to account for the emergent property. 
The feature vector can be any set of summary statistics 
derived from the spectrum. The features derived here are a 
result of correlating chosen templates with mineral 
absorption bands. Several spectral ranges that contain 
features are believed to be helphl in identifying minerals. 
Since spectral analysis often involves looking for maxima 
and minima, a Gaussian shaped template is correlated with 
the spectrum to extract peaks and troughs. The coefficient 
is then normalized to prevent dominance of features. This 
coefficient is computed as: 

where C n  is the correlation coefficient of a spectral range 
and a template. oT and os are the standard deviations of the 
template and spectrum respectively. Other features include .’ 

overall and average intensity of selected bands. Features are 
assumed to only depend on adjacent features and thus, 
considered independent of all other features given their 
neighbors and source mineral. 
Given an environment (for example, a location on Mars) 
scinetists select the minerals that may be present making 
sure to include minerals that are most likely to be confused 
with the response mineral(s). For the Mars example, there 
will be orbital data that can be used to help define the 
compositional materials to be encountered and assist in 
defining minerals that might cause confusion. Then, the 
minerals are partitioned into groups of similar minerals and 
the probability of the appearance of each group is 
estimated. 
To summarize, the steps needed to prepare to train the BBN 
are: 1) select the relevant minerals; 2) define the prior 
probability of  the appearance of each mineral; 3) define the 
probability of each mineral given its class; 4) define 
templates for feature extraction; amd 5 )  collect relevant 
samples of each chosen mineral. 
The BBN should be considered as a method for enabling 
scientific expertise to be used in a robust manner. The 
efficacy of this topology is highly dependent on the 
accuracy of these preparatory steps. In this way, the BNN 
method is similar to an expert system in that it attempts to 
reason autonomously with information set by experts. The 
network is a model of the reasoning process of experts and 
has flexibility as an advantage. It is also able to make use of 
relationships that may be missed by experts if those 
relationships are contained within the training data. 
However, one limitation is that it remains incumbent upon 
a scientist to speculate on  the needed minerals for the 
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mineral variable, estimate the probabilities for the dummy 
variable and construct the feature extraction templates. 
The current implementation uses the Netica software 
package provided by Norsys. Future work will continue 
using an alternate package (Tetrad) provided by [ 171. 

3.2 Expert Svsteni 

Carbonate-Identifier is a rule-based system for the 
identification of specific mineral target (carbonate) from 
reflectance spectra. It is written in C++ and implemented 
under a Coupled Layer Archictehne for Rover Autonomy 
(CLARAty) as a single class. This system consists of a 
hierarchy of components that preprocess a spectrum, 
identify and extract lists of features, apply a rule-based 
system to classify the spectra based upon the characteristics 
of these features, and forward the final results for any 
further uses. The overall structure of is shown in Figure 9. 

Preprocessor System 
Bnncl Feature 
Extractor 

Figure 9. Structure of the expert system carbonate 
identifier. 

The preprocessor renormalizes the spectrum to some 
predefined average albedo. This is done to avoid 
difficulties inherent in obtaining absolute albedos given 
that the spectra of the samples and the reference standard 
would likely be collected at widely different natural 
illuminations. In an operational scenario, the preprocessor 
will also perform such steps as discarding portions of the 
spectrum that may be contaminated by atmospheric features 
and compensating for any instrumental effects. 
There are two feature extractors: 1) a noise feature extractor 
and 2 )  a spectral band identifier. The noise feature 
extractor calculates the standard deviation of the reflectance 
values between 2.0 and 2.5 pm to evaluate the amount of 
noise in the spectrum at this wavelength range. It is used 
to reject data with insufficient signal-to-noise 
characteristics. The spectral band identifier consists of a 
set of steps loosely based on the algorithms described by 
Grove et al. [IS]. These steps apply a boxcar average to 
smooth the spectrum, subtract a hull fit if desired to remove 
the spectral continuum, and finally, search for inflection 
points and local minima to identit) possible absorption 
bands. The operation of these feature extractors is 
controlled by a set of control parameters. The noise value 
and the positions, depth, and other characteristics of these 
spectral bands determined by these feature extractors are 
passed to the rule-based system as features. 



The rule-based system, is a conventional forward-chaining 
expert system that applies a set of rules to a list of facts to 
generate new facts in an iterative fashion until no new facts 
can be obtained. It is based on the well-known algorithm 
described by Winston and Horn [I91 and does not contain 
any refinements such as the Rete algorithm [20] to improve 
performance. This design was chosen for reasons of 
simplicity, reliability, clarity, ease of modification, and 
speed. In particular, the code was designed to be as 
compact as possible to conform to the memory limitations 
of typical spacecraft CPUs. It is well-suited for the fast and 
efficient identification of a small number of possible 
minerals. 
This approach has several advantages that make it well- 
suited for autonomous spacecraft operation. In particular, 
it is compact (on the order of 1-200 kB) and extremely fast. 
it has also proved reliable. During the 1999 Marsokhod 

Field Tests [21,22], a prototype of this system produced 
success rates and false positive rates comparable to those of 
a human expert [23]. 
This approach also has a number of significant 
disadvantages. In its current form, it is unable to learn new 
rules on its own. While this limitation could be addressed 
by the incorporation of rule-learning schemes, it is unclear 
that this would offer any significant advantages over simply 
uploading new rules to the spacecraft as they might be 
required. 
The system may also be poorly suited for the identification 
of large numbers of different minerals. In its current form, 
performance scales as N2, where N is the number of rules, 
and while this limitation could potentially be addressed by 
use of the Rete [20] algorithm, we have no plans to 
implement the relevant changes. 

Existing time, communication, and computational 
resource constraints currently associated with operating 
rovers on Mars suggest on-board science evaluation of 
sensor data can contribute to decreasing human- 
directed operational planning, optimizing returned 
data volumes, and recognition of unique or novel data. 
All of which can act to increase the scientific return 

from a mission. 
Many different levels of science autonomy exist. Each 

impacts the data collected and returned by, and 
activities of, rovers 
Several computational algorithms, designed to 

recopize objects of interest to geologists and 
biologists, are representative of various hnctions that 
can produce scientific opinions. 
Several scenarios illustrate how these opinions can be 

used, but realistic testing and comparison to human 
performance remain to be evaluated. 

4. SUMMARY 
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Future efforts to develop additional methods for the 
detection of geologically significant patterns in images 
and spectra are clearly needed. 
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